日本

Publications

Detection, phenotyping, and quantification of antigen-specific T cells using a peptide-MHC dodecamer

Huang, J., Zeng, X., Sigal, N. et al.

Here we report a peptide-MHC (pMHC) dodecamer as a “next generation” technology that is a significantly more sensitive and versatile alternative to pMHC tetramers for the detection, isolation, and phenotypic analysis of antigen-specific T cells. In particular, dodecamers are able to detect two- to fivefold more antigen-specific T cells in both human and murine CD4+ and CD8+ αβ T-cell compartments compared with the equivalent tetramers. The low-affinity, tetramer-negative, dodecamer-positive T cells showed comparable effector cytokine responses as those of high-affinity, tetramer-positive T cells. Dodecamers are able to detect early stage CD4+CD8+ double-positive thymocytes on which T-cell receptors are 10- to 30-fold less dense than mature T cells. Dodecamers also show utility in the analysis of γδ T cells and in cytometry by time-of-flight applications. This construct has a simple structure with a central scaffold protein linked to four streptavidin molecules, each having three pMHC ligands or other molecules. The dodecamer is straightforward and inexpensive to produce and is compatible with current tetramer technology and commercially available streptavidin conjugates.

Citation

Huang, J., Zeng, X., Sigal, N. et al. "Detection, phenotyping, and quantification of antigen-specific T cells using a peptide-MHC dodecamer" Proceedings of the National Academy of Sciences of the United States of America (2016): 113