日本

Publications

Effect of pendant group structure on the hydrolytic stability of polyaspartamide polymers under physiological conditions

Lu, Y., Chau, M., Boyle, A.J. et al.

We describe the synthesis of metal chelating polymers based on polyaspartamide and polyglutamide backbones as carriers for (111)In in radioimmunoconjugates. These polymers [PAsp(DTPA), PGlu(DTPA)] have a biotin end group and diethylenetriaminepentaacetic acid (DTPA) chelators attached to the primary amines of the diethylenetriamine (DET) pendant groups of biotin-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} [PAsp(DET)] and of biotin-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]glutamide} [PGlu(DET)]. Like Asn-containing proteins and polypeptides, polyaspartamides undergo uncatalyzed degradation under model physiological conditions (10 mM phosphate buffer, pH 7.4, 150 mM NaCl). We studied the uncatalyzed degradation of the polyaspartamide polymers by size exclusion chromatography and found that the degradation rate was sensitive to the nature of the pendant groups. The metal-free polymer underwent somewhat slower degradation than the corresponding polymers in which the DTPA groups were saturated with Eu(3+) or In(3+), but even after 14 days, substantial fractions of the polymers survived. We conclude that these polymers undergo negligible degradation on the time scale (24-48 h) of radioimmunotherapy treatment of tumors with (111)In. From a mechanistic perspective, we note that these degradation rates are on the order of the deamidation rates reported [J. Peptide Res. 2004, 63, 426] for Asn-containing pentapeptides, with half-times on the order of 10 days, but much slower than the rapid decay (hours) reported recently [Biomaterials 2010, 31, 3707] for poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} itself. This variation in degradation rate can be explained in terms of the influence of positive charges on the pendant group enhancing the acidity of the side-chain amide nitrogen of the aspartamide repeat unit. The DET pendant group is positively charged at pH 7, but in indium-loaded PAsp(DTPA) this charge is offset by the net negative charge of the DTPA-In complex.

Citation

Lu, Y., Chau, M., Boyle, A.J. et al. "Effect of pendant group structure on the hydrolytic stability of polyaspartamide polymers under physiological conditions" Biomacromolecules (2012): 1,296–306